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In this paper, the upper bound method has been used in analysis of the flat rolling process
and prediction of internal defects for a strain-hardening material. The arc of contact has been
replaced by a chord. The inlet shear boundary of the deformation zone has been assumed
as an exponential curve and the boundary at the exit has been assumed as a cylindrical
surface. A kinematically admissible velocity field has been proposed and internal, shear and
frictional power terms have been derived. By minimizing the total power with respect to
the neutral point position and the shape of the inlet shear boundary, the rolling torque has
been determined. A criterion has been presented to predict the occurrence of the internal
defects for given rolling conditions. Comparison of the analytically developed approach for
rolling torque and internal defects with published theoretical and experimental data shows
generally good agreement.
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1. Introduction

Flat rolling is the process of reducing thickness of a long sheet by torques applied through a set of
rolls. The rolling process widely is used in production of industrial components, so concentrating
on the final quality of the parts produced by this process is very important. Internal central
bursts are common rolling processing defects. Ignoring their prediction causes both losses of
physical injury and property damage or reducing quality of the final products. Usually, it is
very difficult to detect central bursting defects by surface inspection. The investigations on
flat rolling have been conducted for decades and various aspects of these processes have been
studied. Dyja and Pietrzyk (1983) analyzed an asymmetric dual hot-rolled sheet using minimum
energy, and replaced the arc of contact by a chord. Avitzur et al. (1988) modeled the flat
rolling process by using upper bound analysis for rigid perfectly plastic materials to predict
internal defects. Takuda et al. (1989) analyzed the strip rolling process by assuming a simple
velocity field by considering free deformation zones in front and behind the roll gap. Turczyn
and Pietrzyk (1992) analyzed the effect of deformation zone geometry on the internal defect
in the flat rolling process. They used the upper bound method and took into consideration
velocity boundaries. Discontinuity circular arcs were present and uniform velocity fields for
internal defects assumed. Prakash and Dixit (1995) proposed a model for steady state plane
strain cold rolling of a strain-hardening material which could predict the roll force and torque
with reasonable engineering accuracy over the usual range of process variables. Turczyn (1996)
analyzed the effect of deformation zone geometry on the internal defects in rolling process using
the upper bound method. Martins and Barata (1999) presented an approach for analyzing plane
strain rolling. They used the upper bound method to estimate the rolling torque and to model the
material flow within the region of deformation between the rolls. Dogruoglu (2001) introduced a
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systematic method for constructing kinematically admissible velocity fields, which was necessary
in the analysis of the plastic forming process by the upper bound method. Gosh and Gardiner
(2004) identified various modeling issues that were necessary for successful simulation of the cold
rolling process by comparing it with experiments on aluminum alloys. Rajak and Reddy (2005)
analyzed internal defects in the plane strain rolling process with the finite element method. They
used critical damage criteria. Serajzadeh and Mahmoodkhani (2008) presented a combined upper
bound and finite element model for prediction of velocity and temperature fields during the hot
rolling process. The closing behavior of internal defects in the central part of a continuous casting
steel slab during rough transverse rolling was investigated by using FE-code, ANSYS/LS-DYNA
by Deng et al. (2009). Misicko et al. (2009) observed and analyzed by computer simulation
behavior of artificial surface defects inside flat steel samples during the hot rolling process by
selected parameters. Cao et al. (2015) investigated the prediction of damage for the ultimate
wire flat rolling process of high carbon steel using three different approaches of ductile damage.
Haghighat and Saadati (2015) presented the kinematically admissible velocity field for the rolling
of sandwich sheets, non-bonded before rolling, and discussed some mathematical aspects by
the upper bound method. Haghighat and Pargzadeh (2017) investigated the effect of strain
hardening on the central bursting defects in rod extrusion process. In this paper, analyses of
plastic deformation and prediction of internal defects in flat rolling process of a strain-hardening
material using the upper bound method is considered. The arc of contact between the roll and
the sheet is replaced by a chord. Based on the FEM, it is observed that the inlet and outlet
shear boundaries are not circular and in any condition such as inlet thickness and reduction in
area are deferent, then we present arbitrary exponential shear boundaries and velocity field that
can predict rolling torque and internal defects. Then a kinematically admissible velocity field is
proposed and internal, shear and frictional power terms are derived. By minimizing the total
power with respect to the neutral point position and the shape of the inlet shear boundary, the
rolling torque and the occurrence of internal defects is investigated. The effect of the friction
factor, strain-hardening exponent and reduction in the area on the rolling torque and safe and
unsafe domains are investigated.

2. Upper bound analysis

Figure 1 shows flat rolling process parameters in a schematic diagram. Because of symmetry of
the process, only half of the section is considered. An important subject in the upper bound
analysis is the assumption of shear boundaries and a kinematically admissible velocity field satis-
fying volume constancy in the deformation zone and boundary conditions. In order to determine
the velocity field, the arc of contact is replaced by a chord. The material starts as a sheet of
thickness ti and then is deformed into a sheet of thickness 2tf , vi is the initial velocity of the
sheet and vf is the velocity of the product, α is the angle of the line connecting the initial point
to the final point of the contact arc with the axis of symmetry. R is radius, and ω is angular
velocity of the roll.

2.1. Velocity zones

To analyze the process, the material under deformation is divided into three deformation
zones, as shown in Fig. 1. In zones I and III, the material moves rigidly with the velocity vi
and vf , respectively. Zone II is the deformation zone and is surrounded by two shear surfaces
S1 and S2 and the contact surface S3. The shear boundary S2 at the exit from the deformation
zone is assumed to be a cylindrical surface with its center at the apex O. The shear boundary S1
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Fig. 1. Geometry of the sheet, roll, deformation zone and the shear boundaries

is assumed to be an arbitrarily curved surface. Using this description, mathematical equations
of the shear boundaries S1 and S2 are defined in the cylindrical coordinates by

ri(θ, ρi) = ρi exp
[b(θ − α)
α

]

rf (θ, ρf ) = ρf (2.1)

where ri and rf are the radial position of inlet and outlet shear boundary, respectively, and the
radial position in the deformation zone is

r(θ, ρ) = ρ exp
[b(θ − α)
α

ρ− ρf
ρi − ρf

]

= ρg(θ, ρ) (2.2)

where ρi and ρf are the radial distances from the virtual apex to inlet and outlet shear boundaries
on the roll surface shown in Fig. 1, b is the shape factor of the shear boundary at the inlet of
deformation zone II, θ is the peripheral position and ρ is the radial position on the contact
surface, and g is an arbitrary shape function

g(θ, ρ) = exp
[b(θ − α)
α

ρ− ρf
ρi − ρf

]

(2.3)

b can be negative, zero or positive. When b is negative, the shear boundary moves away from the
origin O, when b is positive the shear boundary moves towards the apex O, when b is zero, the
inlet shear boundary is a cylindrical surface (i.e. g = 1). In zone I and III, the material moves
as a rigid body in the axial direction. In zone III, the velocity vf from the volume flow balance
is

vf = vi
ρi
ρf

(2.4)

With regard to the equilibrium of volume flow, the admissible velocity filed in deformation
zone II can be obtained as

vx(dy) = −U̇r(rdθ) (2.5)

vx is the horizontal velocity component in the deformation zone, U̇r is the radial component of
velocity and y is the vertical position.
So, the radial velocity component of the velocity field is

U̇r = −
vx
r

dy

dθ
= −vi

ρi
ρ

(

cos θ +
1

g

∂g

∂θ
sin θ
)

(2.6)

The volume constancy in the cylindrical coordinates system is defined as

dotεrr + ε̇θθ + ε̇zz = 0 (2.7)

where ε̇rr, ε̇θθ, ε̇zz are normal strain rate components.
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According to the cylindrical coordinates strain rates components and the assumption of the
plane strain process, U̇z = 0 (lateral velocity component), the peripheral velocity component
(U̇θ) is

U̇θ = viρi
∂g

∂r
sin θ (2.8)

where

∂g

∂r
=
∂g

∂ρ

∂ρ

∂r
=
b(θ − α)
α

1

ρi − ρf
1

1 + b(θ−α)α
ρ

ρi−ρf

(2.9)

The velocity components in deformation zone II are given as

U̇r = −vi
ρi
ρ

(

cos θ +
1

g

∂g

∂θ
sin θ
)

U̇θ = viρi
∂g

∂r
sin θ U̇z = 0 (2.10)

As it is clear from Eqs. (2.10), on the axis of symmetry U̇θ = 0, and on the contact surface
between the roll and sheet U̇θ = 0, so the incompressibility condition is satisfied. Nonzero strain
rate components in the deformation zone are

ε̇rr = vi
ρi
ρ2
1

g

[(

1− ρ∂g
∂r

)

cos θ +
(1

g

∂g

∂θ
− ρ ∂

2g

∂r∂θ

)

sin θ
]

ε̇θθ = −vi
ρi
ρ2
1

g

[(

1− ρ∂g
∂r

)

cos θ +
(1

g

∂g

∂θ
− ρ ∂

2g

∂r∂θ

)

sin θ
]

ε̇rθ =
1

2
vi
ρi
ρ2
1

g

{[

ρ2
∂2g

∂r2
+
1

g2

(∂g

∂θ

)2
− 1
g

∂2g

∂θ2
+ 1
]

sin θ +
1

g

∂g

∂θ
cos θ
}

(2.11)

2.2. Determinations of power terms

The internal power in the upper bound analysis for a perfectly elasic von Mises material in
the deformation zone is

Ẇi =
2√
3
σ0

∫

V

√

1

2
ε̇ij ε̇ij dV (2.12)

where Ẇi is internal power of deformation, σ0 is the average flow stress and dV is a differential
volume of the deformation zone.

After substitution and simplification, the internal power of region II is given by

Ẇi =
2σ0√
3

α
∫

0

ρi
∫

ρf

√

ε̇2rr + ε̇
2
rθρg
(

g + ρ
∂g

∂ρ

)

dρ dθ (2.13)

The shear power loss at the shear boundary is

ẆS =
σ0√
3

∫

S1,S2

|∆v| dS (2.14)

where ẆS is the shear power loss along the shear boundary, ∆v is the velocity difference and
dS1, dS2 are differential areas of shear surfaces. For calculation of the power consumption on
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each surface of velocity discontinuity, the area of discontinuity and the amount of velocity di-
scontinuity must be determined. With attention to Fig. 1

dS1 = ρig(θ, ρi)

√

1 +
( b

α

)2
dθ

|∆v1| =
∣

∣

∣

∣

vi
(

1− ρi
∂g

∂r

1

1 + (b/α)2

)

√

1 +
( b

α

)

sin θ

∣

∣

∣

∣

(2.15)

thus the shear power loss on the shear surface S1 is obtained as

ẆS1 =
σ0√
3
viρi
[

1 +
( b

α

)2]
α
∫

0

g(θ, ρi)
∣

∣

∣1− ρi
∂g

∂r

1

1 + (b/α)2

∣

∣

∣ sin θ dθ (2.16)

also for the shear surface S2, the differential area and the amount of velocity discontinuity can
be obtained respectively by

dS2 = ρfdθ |∆v2| = |vf sin θ| (2.17)

the shear power loss on the shear surface S2 is obtained as

ẆS2 =
σ0√
3
vfρf

α
∫

0

sin θ dθ (2.18)

The friction power loss at the interface of the sheet and the roll in S3 and its general relation is

Ẇf =
mσ0√
3

∫

S3

|∆v| dS dS3 = dρ

∆v =
∣

∣

∣U̇r|θ=α +Rω
∣

∣

∣ =
∣

∣

∣− vi
ρi
ρ

(

cosα+
b

α

ρ− ρf
ρi − ρf

sinα
)

+Rω
∣

∣

∣

(2.19)

where Ẇf is the friction power loss, dS3 is a differential area of the frictional surface and m is
the friction factor after simplification

Ẇf = m
σ0√
3
viρi

ρi
∫

ρf

1

ρ

∣

∣

∣ cosα+
b

α

ρ− ρf
ρi − ρf

sinα− Rωρ
viρi

∣

∣

∣ dρ (2.20)

In the rolling process, there is only one point along the surface of contact between the roll and
the sheet at which the surface velocity of the roll equals to the velocity of the sheet. This point
is called the neutral point. Between the inlet shear surface and the neutral point the sheet is
moving slower than the roll surface and on the exit side of the neutral point, the sheet moves
faster than the roll surface. The position of the neutral point is where the relative velocity is
zero, then

vi
ρi
ρN

(

cosα+
b

α

ρN − ρf
ρi − ρf

sinα
)

−Rω = 0 (2.21)

where ρN is the radial position of the neutral point on the contact surface.
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2.3. Effective flow stress

Since actual metals exhibit strain-hardening behavior and the upper bound method is based
on the assumption of perfectly elastic material, amendments must be made to match the the-
oretical and actual behavior. For a plastic material, the mean flow stress of the material σ0 is
given by

σ0 =
1

ε

ε
∫

0

σ dε ε =
2√
3
ln
ti
tf

(2.22)

In this paper, a modified upper bound method is used and behavior of the material is considered
as

σ = K(ε)n (2.23)

where K is the strength coefficient, n is the strain-hardening exponent, σ is the effective flow
stress and ε is effective strain. Inserting Eqs. (2.23) into Eq. (2.22), the mean flow stress of the
material is given by

σ0 =
1

n+ 1
K
( 2√
3
ln
ti
tf

)n
(2.24)

According to Fig. 1, in all three zones each particle of the material undergoes different strains.
The material in zone I has no strain-hardening, at the inlet shear boundary it has a strain due
to discontinuity of velocity, in zone II the material undergoes strain due to deformation, after it,
at the outlet shear boundary the material undergoes strain due to discontinuity of velocity and,
finally, it exits from zone III with no deformation. By integrating the incremental strain along
a stream line, the equivalent strain in the product is calculated. It has an angle of inclination θ
to the axis in the deformation zone. At the shear surface, the engineering shear strain γS is

γS =
|∆v|
U̇r

(2.25)

and the effective strain on the shear boundary is

εS =
1√
3
γS (2.26)

At the inlet and outlet shear boundaries, the effective strains are, respectively

εS1 =
1√
3
γS1 =

1√
3

∣

∣

∣

∣

(

1− ρi ∂g∂r 1
1+(b/α)2

)

√

1 +
(

b
α

)2
sin θ

∣

∣

∣

∣

cos θ + 1g
∂g
∂θ sin θ

εS2 =
1√
3
γS2 =

1√
3
tan θ

(2.27)

In the deformation zone, the effective strain is expressed by

εd =

ri
∫

rf

dε =

ri
∫

rf

dε

dt

dt

dL
dL (2.28)

where

dε

dt
= ε̇ =

√

2

3
(ε̇2rr + ε̇

2
θθ + 2ε̇

2
rθ) =

2√
3

√

ε̇2rr + ε̇
2
rθ

dt

dL
=

1
√

U̇2r + U̇
2
θ

(2.29)
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where

dL = dr

√

1 + r2
(dθ

dr

)2
(2.30)

then

εd =
2√
3

ri
∫

rf

√

√

√

√

ε̇2rr + ε̇
2
rθ

U̇2r + U̇
2
θ

[

1 + r2
(dθ

dr

)2]

dr (2.31)

Along the stream line, the equivalent strain in the deformed material is

ε(θ) = εS1(θ) + εd(θ) + εS2(θ) (2.32)

After obtaining the total strain from Eq. (2.32) and substituting in the power law, one can
rewrite the power terms in order to modify the upper bound method with considering the strain-
hardening. So the internal power, shear loss powers on S1 and S2 surfaces and the frictional
power, respectively, are

Ẇi =

∫

V

σε̇ dV =
2√
3

∫

V

K(ε)n
√

1

2
ε̇ij ε̇ij dV

ẆS =

∫

Sv

τ |∆v| dS = 1√
3

∫

V

K(ε)n|∆v| dS

Ẇf =

∫

Sf

τ |∆v| dS = m√
3

∫

V

K(ε)n|∆v| dS

(2.33)

2.4. The required rolling torque

By make use of the upper bound method, the externally supplied power is less than or equal
to the sum of the powers described in the previous Sections. The total power J∗ is

J∗ = Ẇi + ẆS1 + ẆS2 + Ẇf (2.34)

The rolling torque T is given by

T =
J∗

ω
(2.35)

where T is the required rolling torque per unit width of the sheet. The rolling torque is a function
of b (shape factor) and ρN (position of the neutral point). The shape factor b determines the
inlet shear boundary shape. The minimum value of rolling torque with respect to b is the
required torque for the rolling process in the upper bound analysis. Integrals appearing in the
above equations do not have analytical solutions and they have been solved numerically with
MATLAB software.

3. Internal defects prediction criteria

The external torque is a function of several parameters including roll radius, area reduction,
friction factor and shape factor b. In the upper bound analysis, the minimum value of the
external power with respect to b is the required power for the rolling process. According to the
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Fig. 2. Geometrical condition to initiate the internal defect

geometrical condition, for the critical value of shape factor b (bcr), the inlet shear boundary
intersects the outlet shear boundary in the centerline, see Fig. 2.
In this study, it can be taken that

ri(θ = 0, ρi) = rf (θ = 0, ρf ) (3.1)

thus

ρi exp(−b) = ρf (3.2)

so, the critical value of b can be obtained as

bcr = ln
ρi
ρf
= ln
ti
tf

(3.3)

So, if the shape parameter obtained from the optimization of the external power is equal or
greater than the bcr, the internal defects initiate.

4. Results and discussion

The flat rolling process has been analyzed using the proposed approach. In order to obtain
numerical boundaries that can be applied to the prediction and prevention of the occurrence of
internal defects in industry, finite element simulations using the proposed approach have been
carried out for many combinations of reduction in the area and relative thickness. This means
that no internal defects occur under this combination of process parameters. FEM simulations are
conducted on the available commercial explicit/FEM software, ABAQUS, to verify the analytical
model and study the effects of the upper bound method assumptions on the obtained results.
Due to symmetry of the process, finite element meshes are generated on the upper half cross
section of the sheet. The sheet is meshed by 2D plane strain, linear, four-noded CPE4R elements.
The sheet model contains 460 elements. In this model, the rolls are modeled as rigid bodies.
The rolls are rotated by a constant angular velocity about their axes. For verification of the
theoretical study, the results of rolling torque are extracted from FEM simulations. In order
to verify the validity of the upper bound approach for the flat rolling process presented in
the previous Sections, the results obtained from the theoretical model are compared with the
available experimental of data of Martins and Barata (1999) as well as with the results of finite
element simulations. The calculation has been carried out under various rolling conditions and
geometrical data utilized in the rolling analysis summarized in Table 1. During theoretical
analysis and numerical simulations, m is set at 0.3 for the contact surface between the roll
and sheet, radius of the rolls is R = 79.375mm, and the flow stress for aluminum at room
temperature is σ = 50.3(1 + ε/0.05)0.26MPa. The comparisons between the computed results,
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Table 1. Geometrical data used for computations (Martins and Barata, 1999)

Case
2t0 2tf Reduction
[mm] [mm] [%]

1 6.274 5.385 14.17

2 6.274 4.902 21.86

3 6.274 4.445 29.40

4 6.274 4.115 34.41

Fig. 3. (a) Comparison of analytical, FEM and Martins experimental data (Martins and Barata, 1999)
of rolling torque (per unit of width) as a function of the percentage of reduction. (b) Variation of rolling

torque per unit width versus parameter b

FEM simulation and the experimental values of Martins and Barata (1999) for the rolling torque
as a function of the rolling reduction are shown in Fig. 3a. It is observed that the proposed
velocity field leads to a computationally efficient procedure which gives a good agreement with
the experimental data. From Fig. 3a, it can be seen that the calculated torques are basically in
agreement with the measured ones. As expected, the predicted rolling torques are always greater
than the experimental and FEM results, because the present theoretical values are the upper
bound solutions. The reason for such discrepancies may be attributed to the assumption of rigid
rolls as well as to difficulties in the modeling of friction in the contact surface between the rolls
and the deforming sheet. It can be checked from Fig. 3a that the rolling torque increases with an
increase in reduction. Figure 3b shows variation of the rolling load versus the shape parameter b
for several reductions of the area according to Table 1. The internal defects criterion is achieved
after obtaining the shape parameter from both geometrical and analytical conditions and by
comparing them. In Fig. 4, the velocity components obtained from the upper bound solution are
compared with the FEM simulation results in θ = α/2 in the deformation zone. The results show
a good agreement between the upper bound data and the FEM results. It can be seen that the
peripheral velocity components are very small with respect to the radial velocity components.
To compare the numerical results with the experimental results of Ghos and Gardiner (2004),
the analysis performed on Aluminum 6061-T6 whose mechanical and physical properties are
shown in Table 2.

The flow stress for aluminum at room temperature is σ = 410(ε)0.05MPa (Turczyn, 1996).
The initial thickness is ti = 10mm, roll radius R = 100mm, angular velocity ω = 0.167 s

−1 and
friction factor m = 0.3. Figure 5 shows the conditions of area reduction and relative thickness
for preventing internal defects in Aluminum 6061-T6 for both conditions of strain-hardening
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Fig. 4. Comparison of the upper bound and FEM of velocity components (a) radial and (b) peripheral
velocity components for 30% reduction in the area

Table 2. Mechanical properties of Aluminum 6061-T6 (Turczyn, 1996)

Young’s Poisson’s Yield
Density
[kg/m3]

Strength Strain-
modulus ratio stress coefficient -hardening
[GPa] (ν) [MPa] [MPa] exponent

68.9 0.33 276 2700 410 0.05

Fig. 5. Comparison of safe and unsafe zones predicted by the present model and the model
by Turczyn (1996)

and perfectly plastic materials. Also, these results are compared with the experimental data by
Turczyn (1996). It is observed that the safe domain is decreased by including the strain-hardening
behavior of the material in the analysis.

Figure 6a shows the velocity field in the flat rolling process with relative thickness 2ti/R = 0.2
and 40% reduction in area. The velocity field shows that in this case the internal defects do not
occurr. In another model, see Fig. 6b, the reduction of the area is changed to 20% and the
relative thickness is 2ti/R = 0.4, so that it locates in the unsafe zone. Also, Fig. 6b shows that
the internal defects occurr.
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Fig. 6. Deformation zone, (a) for 2ti/R = 0.2 and 40% reduction in the area, (b) for 2ti/R = 0.4 and
20% reduction in the area

Figure 8 shows the effect of friction factor on internal defects initiation situations for Alu-
minum 6061-T6. It can be seen that with an increase in the friction factor, the safe zone size
decreases. The effect of the strain-hardening exponent on the inlet shear boundary is shown in
Fig. 8. From this figure, it can be noticed that with an increase in the strain-hardening exponent,
the intersection point of the inlet shear boundary with the axis of symmetry moves towards the
outside of the rolls, and the tendency of central bursting defects is decreased. Also, the criterion
applied for different strain-hardening exponents is illustrated in Fig. 9a. This figure shows that
with an increase in the strain-hardening exponent value, the safe domain increases. Figure 9b
shows the effect of strain-hardening exponent on the rolling torque for the upper bound appro-
ach and the FEM. This figure illustrates that by increasing the strain-hardening exponent, the
rolling torque decreases. Figure 9b also shows that the theoretically predicted rolling torque is
higher than that from the FEM results, which is due to the nature of the upper bound theory.

Fig. 7. Effect of the friction factor on size of the safe and unsafe zones

Fig. 8. Effect of the strain-hardening exponent on the inlet shear boundary
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Fig. 9. Effect of the strain-hardening exponent (a) on size of the safe and unsafe zones and (b) on the
rolling torque for 30% reduction in the area

5. Conclusions

In this paper, an analytical approach based on the upper bound method, is presented for predic-
tion of rolling torque and occurrence of internal defects in the flat rolling process. The advantages
of the presented criterion are the generality of the proposed inlet shear boundary and a new
kinematically admissible velocity field. In addition, the presented criterion predicts central bur-
sting defects in simpler mathematical equations than in other criteria, and the effect of the
strain hardening exponent of the sheet material on the rolling torque and prediction of internal
defects are investigated. It has been concluded that internal defects are affected primarily by the
strain-hardening exponent. By increasing the strain-hardening exponent, the rolling torque and
the possibility of internal defects decreases. By increasing the strain-hardening exponent, the
safe zone size is increased and the internal defects occur in thick sheets with a small reduction.
Criteria curves for the safe domains are presented for a wide range of process variables. By
using these criteria in the rolling practice, it has become possible to predict necessary rolling
conditions in order to avoid internal defects.
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